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PDE to ODE Matrix

1. In general, cast the finite difference schemes in Matrix Form

d~u

dt
= A~u− ~f(t) (1)

2. For Example

(a) PDE: Diffusion Eq. ODE: d
~u
dt = ν

∆x2B(1,−2, 1)~u+ ~(bc)

(b) PDE: Convection Eq. ODE: d~u
dt = − a

2∆xBp(−1, 0, 1)~u
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General Discussion

1. Note that the elements in the matrix A depend upon both the

PDE and the type of differencing scheme chosen.

2. Vector ~f(t) determined by the BC and possibly source terms.

3. In general, even the Euler and Navier-Stokes equations can be

expressed in the form of Eq. 1.

(a) In such cases the equations are nonlinear, that is, the

elements of A depend on the solution ~u and are usually

derived by finding the Jacobian of a flux vector.

(b) Although the equations are nonlinear, the linear analysis leads

to diagnostics that are surprisingly accurate when used to

evaluate many aspects of numerical methods as they apply to

the Euler and Navier-Stokes equations.
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General Solution of Coupled ODE’s

d~u

dt
= A~u− ~f(t) (2)

1. Assume that the M ×M matrix A has a complete eigensystem

X−1AX = Λ

2. Diagonalizing Eq. 2

X−1 d
~u

dt
= X−1AX ·X−1~u−X−1~f(t) (3)

3. Eq. 3 can be modified to

d

dt
X−1~u = ΛX−1~u−X−1~f(t) (4)
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General Solution of Coupled ODE’s

1. Introduce new variables ~w and ~g such that

~w = X−1~u , ~g(t) = X−1~f(t) (5)

2. Reducing Eq. 2 to a new algebraic form

d~w

dt
= Λ~w − ~g(t) (6)

3. Written line by line: set of independent, single, first-order eqs

w
′
1 = λ1w1 − g1(t)

.

.

.

w
′
m = λmwm − gm(t)

.

.

.

w
′
M = λMwM − gM (t) (7)
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General Solution of Coupled ODE’s: Continued

1. Equations can be solved separately and then re-coupled, using

the inverse of the relations given in Eqs. 5:

~u(t) = X~w(t) =
M∑
m=1

wm(t)~xm

where ~xm is the mth column of X, corresponding to λm.

2. the solution to any line in Eq. 7 is

wm(t) = cme
λmt +

1

λm
gm

where the cm are constants that depend on the initial conditions.
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General Solution of Coupled ODE’s: Continued

1. Transforming back to the u-system gives

~u(t) = X~w(t)

=
M∑
m=1

wm(t)~xm =
M∑
m=1

cme
λmt ~xm +

M∑
m=1

1

λm
gm~xm

=

M∑
m=1

cme
λmt ~xm +XΛ−1X−1~f

=
M∑
m=1

cme
λmt ~xm + A−1~f

︸ ︷︷ ︸
Transient

︸ ︷︷ ︸
Steady-state

(8)
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General Solution of Coupled ODE’s: Continued

1. Note that the steady-state solution is A−1~f , as might be

expected.

2. The first group of terms on the right side of this equation is

referred to classically as the complementary solution or the

solution of the homogeneous equations.

3. The second group is referred to classically as the particular

solution or the particular integral.

4. In our application to fluid dynamics, it is more instructive to

refer to these groups as the transient and steady-state solutions,

respectively.
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Eigenspectum for Model ODE’s: Diffusion

1. PDE: Diffusion Eq. ODE: d
~u
dt = ν

∆x2B(1,−2, 1)~u+ ~(bc)

2. From Appendix B in Text: eigenvalues of
ν

∆x2B(1,−2, 1),m = 1, 2, · · · ,M :

λm =
ν

∆x2

[
−2 + 2 cos

(
mπ

M + 1

)]
=
−4ν

∆x2
sin2

(
mπ

2(M + 1)

)
(9)

3. The Eigenvectors, for M = 4
sin ( π

M+1 ) sin (2· π
M+1 ) sin (3· π

M+1 ) sin (4· π
M+1 )

sin ( 2π
M+1 ) sin (2· 2π

M+1 ) sin (3· 2π
M+1 ) sin (4· 2π

M+1 )

sin ( 3π
M+1 ) sin (2· 3π

M+1 ) sin (3· 3π
M+1 ) sin (4· 3π

M+1 )

sin ( 4π
M+1 ) sin (2· 4π

M+1 ) sin (3· 4π
M+1 ) sin (4· 4π

M+1 )
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Eigensolution for Diffusion Equation

1. For the diffusion equation, Eq. 8 becomes

uj(t) =

M∑
m=1

cme
−νκ∗m

2t sinκmxj + (A−1f)j (10)

2. With the modified wavenumber for diffusion defined as

−κ∗m
2 = −4ν

∆x2 sin2
(

mπ
2(M+1)

)
3. Comparing with the exact solution to the PDE evaluated at the

nodes of the grid, (h(xj) particular solution satisfying the BC):

uj(t) =
M∑
m=1

cme
−νκm2t sinκmxj + h(xj), (11)
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4. The solutions are identical except for the steady solution and the

modified wavenumber in the transient term.

5. The modified wavenumber is an approximation to the actual

wavenumber.

6. The difference causes the various modes (or eigenvector

components) to decay at rates which differ from the exact

solution.

7. With conventional differencing schemes, low wavenumber modes

are accurately represented, while high wavenumber modes (if

they have significant amplitudes) can have large errors.
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Eigenspectum Model ODE’s: Periodic Convection

1. PDE: Convection Eq. ODE:
d~u
dt = − a

2∆xBp(−1, 0, 1)~u;m = 0, 1, 2, · · · ,M − 1

2. From Appendix B in Text: eigenvalues of − a
2∆xBp(−1, 0, 1):

λm =
−ia
∆x

sin

(
2mπ

M

)
= −iκ∗ma (12)

3. The right-hand eigenvectors are given by

~xm = ei j (2πm/M),
j = 0, 1, · · · ,M − 1

m = 0, 1, · · · ,M − 1

With xj = j ·∆x = j · 2π/M
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Eigensolution for Convection Equation

1. For the biconvection equation the ODE solution as

uj(t) =
M−1∑
m=0

cme
−iκ∗mateiκmxj , j = 0, 1, · · · ,M − 1 (13)

2. Comparing the exact solution of the PDE evaluated at the nodes

of the grid:

uj(t) =

M−1∑
m=0

fm(0)e−iκmateiκmxj , j = 0, 1, · · · ,M − 1 (14)

3. This Should look very familiar from the previous lecture on

Modified Wave Numbers
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4. Once again the difference appears through the modified

wavenumber, k∗

5. This leads to an error in the speed with which various modes are

convected.

6. In the case of non-centered the modified wavenumber is complex

producing nonphysical decay or growth in the numerical solution.
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Representative ODE

1. Our next objective is to find a “typical” single ODE to analyze.

2. We found the uncoupled solution to a set of ODE’s above with a

typical member of the family

dwm
dt

= λmwm − gm(t) (15)

3. The goal in our analysis is to study typical behavior of general

situations, not particular problems.

4. The role of λm is clear; it stands for some representative

eigenvalue in the original A matrix.
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5. What should we use for gm(t) when the time dependence cannot

be ignored?

6. One can express any one of the forcing terms gm(t) as a finite

Fourier series.

7. For example −g(t) =
∑
k ake

ikt

8. Eq. 15 has the exact solution:

w(t) = ceλt +
∑
k

ake
ikt

ik − λ

9. From this we can extract the kth term and replace ik with µ.
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This leads to

The Representative ODE

dw

dt
= λw + aeµt

(16)

10. The exact solution of the representative ODE is (for µ 6= λ):

w(t) = ceλt +
aeµt

µ− λ
(17)
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